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Essay

Prospects for Machine Learning  
Activity within the United States  
National Weather Service
Paul J. Roebber  and Stephan Smith

ABSTRACT: The National Weather Service (NWS) Office of Science and Technology Integration 
commissioned a report to assess the status of artificial intelligence (AI) and machine learning (ML) 
activity within the agency with a view toward identifying existing obstacles and recommending 
future directions. The purpose of this essay is to communicate the steps that the NWS plans to 
take to realize the potential benefits of AI in operations. AI activities are growing rapidly within 
atmospheric sciences, and the NWS is part of this growth. However, the activity is fragmented and 
lacks the needed infrastructure for improved coordination of effort. Current obstacles to progress 
include insufficient workforce training in AI/ML, a lack of curated datasets and software that can 
be used for development and evaluation of these approaches, the absence of a centralized clearing 
house available to NWS personnel for technical expertise and consultation, limited operational 
compute resources, and a lack of a clear end-to-end project pathway that encompasses explora-
tion, development, testbed/proving ground, and operational implementation. These limitations are 
addressable. Training materials specific to NWS interests can be developed through collaboration 
with existing NOAA centers. Establishing a reference library staffed with AI/ML consultants tasked 
with collaborating with operational units would reduce siloed efforts and enhance productivity.  
Establishing funding vehicles for theme-based projects with a sustainable pathway through  
operational implementation would help bridge the research-to-operations “valley of death.” Given 
the growth of AI/ML across the U.S. Weather Enterprise and the already substantial involvement 
of academic and private sector entities, these developments within the NWS will be of interest 
to the atmospheric science field.

https://doi.org/10.1175/BAMS-D-22-0181.1
Corresponding author: Paul J. Roebber, roebber@uwm.edu
In final form 17 May 2023
©2023 American Meteorological Society
For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy.

KEYWORDS:
Atmosphere;
North America;
Forecasting;
Machine learning

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:13 PM UTC

https://orcid.org/0000-0002-9093-0433
mailto:roebber@uwm.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U LY  2 0 2 3 E1334

This essay summarizes the findings of a report commissioned by the National Weather 
Service (NWS; see Table 1 for acronym definitions) Office of Science and Technology 
Integration to evaluate prospects for the agency in the artificial intelligence (AI)/

machine learning (ML) domain [see Roebber (2022) for full details]. The intent of this essay 
is to communicate the steps that the NWS plans to take to realize the potential benefits 
of AI in operations. The relevance to the wider atmospheric science community is the 
involvement of weather service partners, including those in academia, the private sector, 
and NOAA laboratories. This effort is aligned with the Priorities for Weather Research 
report (hereafter PWR-2021; NOAA Science Advisory Board 2021), which states a need to 
“target the understanding and prediction of high-impact weather to match the urgent need 
imposed by climate trends, population and infrastructure increases, and disproportionate 
impacts on vulnerable communities; including exploring new innovations with AI and 
machine learning applications.” Similarly, the 2020 NOAA Artificial Intelligence Strategy 
(NAIS) states a vision that the “expansion of Artificial Intelligence (be) accelerated across 
the entire agency to make transformative improvements in NOAA mission performance and 
cost effectiveness.”

In performing this evaluation, it is necessary to consider some context. Several definitions 
and understandings of ML and its distinction from AI exist. For example, from the NAIS: 
“Artificial Intelligence refers to computational systems able to perform tasks that normally 
require human intelligence, but with increased efficiency, precision, and objectivity. A subset 
of AI called machine learning refers to mathematical models able to perform a specific task 
without using explicit instructions, instead relying on patterns and inference.”

AFFILIATIONS: Roebber—Atmospheric Science Program, University of Wisconsin–Milwaukee, Milwaukee, 

Wisconsin; Smith—Office of Science and Technology Integration, NOAA/National Weather Service, 

Silver Spring, Maryland

Table 1. A list of acronyms.

Acronym Definition Acronym Definition

AI Artificial intelligence NAIS NOAA artificial intelligence strategy

ANN Artificial neural network NBM National blend of models

CNN Convolutional neural network NCAI NOAA’s Center for Artificial Intelligence

COVID Coronavirus disease netCDF Network Common Data Form

CPU Central processing unit NOAA National Oceanic and Atmospheric Administration

CSTAR Collaborative Science, Technology, and Applied Research NSF National Science Foundation

GPU Graphics processing unit NWP Numerical weather prediction

HPC High performance computing NWS National Weather Service

JTTI Joint Technology Transfer Initiative PWR-2021 NOAA Science Advisory Board (2021)

MDL Meteorological Development Laboratory RF Random forest

ML Machine learning RL Readiness level

MLP-ANN Multilayer perceptron ANN R2O Research-to-operations

MLR Multiple linear regression
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To some degree, this definition overstates what is being accomplished with present tech-
nologies. To be sure, evolutionary history has ingrained the importance of pattern recognition 
as an element of human intelligence, including the tendency toward overforecast bias (e.g., 
Foster and Kokko 2008; Shermer 2008)—but true intelligence cannot be divorced from context. 
Ecologically speaking, the mind is gauging value, which is context dependent (Barrett 2021). 
For example, whether it is worth expending energy to obtain food depends on both the cur-
rent and future state (hunger) and how much energy expenditure is needed. Our brains are 
prediction engines, trying to anticipate what sensory inputs they will receive next. Presently, 
AI/ML is not capable of this form of generalization, although generalized AI is an active area 
of research (McKenna et al. 2020).

Instead, AI/ML approaches today are based upon “learning” patterns in a narrow and 
rigorously defined framework, such as skill games like chess or Go. We have used quotation 
marks above, since whether or not an ML algorithm truly learns is a matter of debate and 
subject to the specific definition of learning (e.g., Kodelja 2019). Some of the most powerful 
chess engines now use the form of ML known as reinforcement learning, which essentially 
instructs the computer to play hundreds of millions of games against itself, building its ex-
pertise through these trials. In so doing, the algorithm finds the most optimal moves in the 
most probable situations. The most successful chess grandmasters look for lines of play that 
are useful but have not necessarily been favored in computer evaluations. As noted by Litt 
(2020), human and chess engine teams are often superior to humans or machines alone, and 
these teams do not necessarily include top-ranked human players. This is reminiscent of the 
experienced forecaster who uses computer guidance to inform but not supplant personal judge-
ment and reflects the critical importance of understanding the strengths and limitations of 
the automated guidance. Trustworthiness and presumably the quality of the resulting forecast 
will depend on that understanding (see below for more discussion of AI/ML trustworthiness).

There is a long history of weather forecasters “teaming” with guidance to perform better 
than human forecasters or guidance alone, as evidenced by the added skill of NWS forecast-
ers relative to guidance [e.g., Fig. 5 of Schaffer et al. (2020) for tropical storms]. However, 
the forecast itself is only one part of the forecast process. The communication of forecaster 
understanding of the weather risks specific to those partners exposed to that risk or tasked 
with working with those exposed to the risk (such as emergency managers) is the “last mile” 
of the forecast process (e.g., Lazo et al. 2016). AI/ML reflects a potential acceleration of the 
shift in NWS focus from forecast generation to weather decision support, since better guid-
ance tools can free time for forecasters to focus more on those interactions with core partners.

In the atmospheric sciences, data analysis and postprocessing have been rooted in tradi-
tional statistical methods. The most noteworthy and longstanding example of this is model 
output statistics (MOS; Glahn and Lowry 1972), which uses the well-established method of 
multiple linear regression (MLR) to produce forecast variables in an operational context. In 
operations, the focus is necessarily on making predictions. While this focus seems particularly 
well suited to a field organized around forecasting, the physics basis of atmospheric science 
argues for a need to understand as well as predict, and the confidence that ensues from un-
derstanding why a prediction is being made. One advantage of linear methods like MLR is the 
relative ease in understanding the relationship between the inputs and the prediction—there 
is a trade-off between the additional skill obtainable in some forecast problems by account-
ing for nonlinearities as directly achievable through AI/ML (e.g., neural networks) and the 
increased difficulty in understanding the result obtained using those methods.

Further, it is now recognized that the so-called objective nature of AI/ML does not imply a 
lack of bias, since these techniques fundamentally depend on the choices of the developers 
in terms of what data to use, what metrics define success, and the fundamental limitations of 
the data itself (quantity, quality, collection patterns, etc.). This issue will become increasingly 
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important as social science applications become more common in the decision support context 
of weather forecasting.

All the above suggests that AI/ML algorithms should be considered another useful tool for 
informing the decision-making process, but in making those decisions, a deep understanding 
of both the strengths and weaknesses (such as inherent biases) of these algorithms is essential.  
This speaks to the need for a trained workforce—not necessarily algorithm developers but  
coordinated efforts between those developers and domain experts who are tasked with using  
these tools in the decision support process. These perspectives inform the contents of this  
essay, which was assembled with contributions from a large cohort of NWS practitioners and 
external (academic) collaborators, whose collective work involves research, implementation, 
and application of these and other forecast tools. We also draw from Haupt et al. (2021) 
and Boukabara et al. (2021), the latter of which reports on a 2019 workshop that brought 
together over 400 scientists, program managers, and leaders from the public, academic, and 
private sectors involved in the development and adaptation of AI tools and applications.

Current activities
AI/ML has a long history within the environmental sciences (Haupt et al. 2022). Attendees 
of recent annual meetings of the American Meteorological Society (AMS) have qualitatively 
experienced a rapid growth in community data science activity, as indicated by the number 
of papers presented, integrated throughout multiple sessions (Fig. 1) [see also Fig. 1 from 
Chase et al. (2022) for longer-term trends in AI/ML publications].

NOAA’s Center for Artificial Intelligence (NCAI) provides a count of data science projects 
across the agency, and this count also reveals considerable activity by NWS and across NOAA’s 
Line Offices and mission areas, with ~188 self-reported projects in 2020 and ~263 in 2022  
(R. Redmon 2022, personal communication). Indeed, in response to this growing interest 
in the field, the AMS recently launched a new journal devoted to AI/ML for Earth systems  
(www.ametsoc.org/index.cfm/ams/publications/journals/artificial-intelligence-for-the-earth-systems/).

Fig. 1. AI/ML activity (abstracts presented, AI and joint sessions held) at the AMS Annual Meeting  
(A. McGovern 2022, personal communication).
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A number of AI/ML projects are currently underway within the NWS. A non-exhaustive list 
providing some sense of the variety of these projects and their distribution across the NWS 
is provided in Roebber (2022). This set of projects mirrors the findings of the NAIS, which 
listed a number of existing AI/ML efforts within NOAA that pertain to the NWS, including  
1) quality control of weather observations; 2) improving physical parameterization for 
weather, ocean, ice modeling, and improving the computational performance of numerical  
models; 3) aiding weather warning generation; 4) supporting partners in wildfire detection 
and movement; and 5) using machine learning for reliable and efficient processing, inter-
pretation, and utilization of Earth observations. We note that AI/ML tools, if implemented 
properly, also can assist operations with the well-known problem of data overload, since 
trained users can deploy them to get the sense of large volumes of data and extract explicit 
information relatively quickly. Given this potential, several “wish list” projects were also 
identified by contributors to this review (Roebber 2022). A subset of these includes week 
two extreme events, grid and scenario-based postprocessing, data-driven water reservoir 
predictions, and computationally efficient data extraction from numerical weather  
prediction (NWP) models.

At this stage, one can view NWS AI/ML activity as broad-based and growing, but unco-
ordinated. Again, from the NAIS: “Despite this notable progress, the true potential for AI 
to advance NOAA’s mission has not been realized because all NOAA AI activity heretofore 
has originated within individual offices with no institutional support. Additionally, some 
development has been redundant because of a lack of awareness across the agency due to 
the absence of a coordinating directive or authority.” Our survey suggests the roots of this 
redundancy are as noted above, but also owing to the need to perform any such coordination 
with a thoughtful inclusion of the expertise and operational requirements of specific entities 
(e.g., the needs of the Storm Prediction Center are not identical to those of the National Hur-
ricane Center). Accordingly, any proffered solutions must take this needed domain expertise 
and site-specific application into account.

Limitations to future progress
Successful ML development depends on three pillars: 1) ample, quality-controlled datasets;  
2) technical skills for development; and 3) domain expertise—familiarity both with the forecast 
problems and the operational logistics of the setting where that problem is being considered. 
Several roadblocks in the path from research-to-operations (R2O) exist in the AI/ML domain, 
relevant to each of these pillars, and are discussed in turn below.

Workforce training and domain expertise. The PWR-2021 report noted an important work-
force challenge related to AI/ML, specifically “staying nimble requires a workforce with a 
broader and evolving range of technical skills and spectrum of talents. Future workforces 
will include meteorologists working with other experts in Earth sciences, high performance 
computing (HPC), artificial intelligence (AI) and machine learning (ML), observing, data as-
similation, modeling technologies, social sciences, etc. Strategies to increase the workforce 
capacity will be essential given the increasing demands for these skills.”

Currently, NWS employees tend to come from two main areas of academic training, neither 
of which explicitly requires training in AI/ML. While the physical scientist classification 
(GS-1301) allows some flexibility, the GS-1340 requirements for meteorologists leave little 
room for expansion and are now decades old. It is not necessarily the case that every NWS 
employee must be an AI/ML expert with the ability to develop such models themselves, but at 
a minimum, they should be sufficiently aware of this domain to speak intelligibly with AI/ML  
developers and to recognize both opportunities and pitfalls associated with application of 
these technologies to areas within their purview. Accordingly, the NOAA/NWS standards 
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should be revised to promote greater flexibility and expansion of skills that are needed now 
and those that will be needed in the future (e.g., Stuart et al. 2022).

This reinforces the need for domain expertise. Since the technical expertise for AI/ML is 
substantial, often such experts come from computer science, and such individuals are typi-
cally not well versed in the details of either the meteorology or operational logistics. While it 
is possible to come from such a background and gain additional knowledge through further 
academic training (e.g., coursework) and work experience, deep understanding of operational 
needs and logistical challenges in addition to meteorological knowledge are required to build 
AI/ML tools that can be incorporated into routine use. This suggests that a balance between 
centralization and local expertise needs to be established for successful coordination of  
AI/ML activity across the NWS.

Beyond the development stage, there is a need for users to be sufficiently aware of 
the strengths and weaknesses of AI/ML tools to use them judiciously rather than simply 
as a black box. Equally as important, a lack of sophisticated understanding of these 
strengths and weaknesses likely reinforces resistance to change rather than an attitude 
of exploring possibilities. This connects to the active areas of interpretable ML and 
trustworthiness—for such tools to be employed, their credibility will be critical (see also 
Boukabara et al. 2021).

The National Artificial Intelligence Research and Development Strategic Plan (NSTC  
2019) emphasized the development of trustworthy AI systems. The National Science  
Foundation (NSF) call for proposals for National Artificial Intelligence (AI) Research Insti-
tutes (https://www.nsf.gov/pubs/2022/nsf22502/nsf22502.htm) notes that technologies are trusted  
“because they are reliable, predictable, governed by rigorous and measurable standards, 
and provide the expected benefits.” Cains et al. (2023) explored trustworthiness in the 
context of weather forecasting by studying the use of AI/ML tools by a set of 16 NWS fore-
casters from different regions. They found that forecaster understanding of the guidance 
involves understanding the functionality of the model, its strengths and weaknesses, how 
the model performs under different scenarios, and how the model performs compared 
to other guidance. Further, Cains et al. (2023) emphasize that forecasters need personal  
experience with the guidance, that is, to be able to use the tool both before and during 
use, since this allows the forecasters to interact and interrogate the proffered solutions, 
and to develop mental bias corrections of the model’s performance. We expect that, if such 
experience is developed, the resulting sophisticated application of AI/ML tools will benefit 
weather decision support efforts.

Data and computational resources. Data requirements for both traditional and AI/ML tech-
niques are extensive. In the case of AI/ML, to develop such algorithms, the best practice is 
to split these data into three segments: a training segment, a validation segment, and an in-
dependent test segment. The training segment is used for model development (e.g., to tune 
the weights and biases of a neural-network model); the validation segment is used to select 
model hyperparameters (e.g., the optimal number of layers or weights for a neural network); 
and the test segment is used to evaluate the generalization of the results once training and 
tuning are completed.

Datasets are necessarily large, since this process requires “exploration” of the n-dimensional 
variable space—if these data do not sufficiently fill this space (i.e., are not comprehensive 
nor representative, as might be the case for an extreme event), then the AI/ML scheme may 
not be able to produce a good mapping of inputs to outputs in that area, leading to potential 
performance errors (see also Boukabara et al. 2021). Further, since this mapping is nonlinear, 
multiple examples within a data neighborhood help to reduce the deleterious impacts of noisy 
data, further increasing the needed size of the dataset.

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 08/02/23 02:13 PM UTC

https://www.nsf.gov/pubs/2022/nsf22502/nsf22502.htm


A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y J U LY  2 0 2 3 E1339

Second, it is a truism of this work that considerable time is spent simply managing datasets 
(aka data wrangling). For example, in a survey conducted by the Earth Science Information 
Partners Data Readiness cluster (an open cross-sector collaboration that the NCAI contributes 
to), responses to the question “In your typical AI/ML application development, roughly what 
percentage of your time do you spend on finding, accessing, and preprocessing data?” showed 
that only 20% of the survey group spent a quarter or less of their time on that activity, and 
nearly half indicated that they spent the majority of their time on this task (R. Redmon 2022, 
personal communication). This is the case since the variety of needed inputs come in many 
different formats, from multiple sources, and may further need to be synced in space and time 
before being presented to an AI/ML scheme for training. These data must also be quality con-
trolled to limit the amount of noise that is presented. The consequence of these requirements 
is that some problems are not amenable to AI/ML algorithm development, either because the 
data needed do not exist or the time requirements for the development task are too extensive.

Space and compute needed for development of AI/ML tools likewise can be substantial, 
owing to the size of the datasets and the data cycling needed for training those algorithms. 
Further, such training can be more effective when graphics processing units (GPUs) rather 
than centralized processing units (CPUs) are available, owing to their ability to process large 
blocks of data in parallel. Currently, such a development system is lacking. Operational com-
putational resources are also a limitation, since finding compute slots on the NWS operational 
system is always a challenge. Without increased availability of these computational resources, 
development of AI/ML tools will be constrained and when developed, the transition of those 
technologies to operations will not occur (see also PWR-2021).

Fundamental AI/ML research. There is a need for exploratory AI/ML work, which con-
trasts with the readiness level (RL) criteria used in collaborative opportunities such 
as the Joint Technology Transfer Initiative (JTTI) program. The JTTI program requires  
RL 4 or above, defined as a concept that has been already developed and validated and  
is ready to be tested in a NOAA pseudo-operational environment. In the AI/ML domain, 
owing to the rapid development in this field and the need to do considerable exploration 
of new approaches in an operational context, the limited opportunities for funding research 
at lower readiness levels blocks innovation. This approach promotes incremental rather 
than the high-risk–high-reward work that is needed.

One academic contributor commented that there are insufficient dedicated resources to 
increase RLs on projects, for example, the difficulty of showing that the technique works well 
enough to gain review in an operational testbed. While NOAA’s Oceanic and Atmospheric 
Research laboratories are intended to be the places where mid-RL level research is done within 
NOAA, there is a lack of coordination between efforts across the agency. Another substantial 
obstacle is the inconsistent timeline between academic work and operations.

Whether or not such tools are developed and have potential to be operationally useful, 
transitioning them to the operational computing system (such as NOAA’s Weather and  
Climate Operational Supercomputing System or a cloud system) is a further challenge, owing 
to availability of that resource (such as limited compute slots or funding for time on a cloud  
system) and the time of NOAA collaborators to effect implementation and support. At  
present, there is, in this sense, no centralized home or dedicated support for AI/ML develop-
ment within the NWS.

More generally, there are relatively few funding opportunities for academic collaborators, 
and as such, even those academics inclined to pursue the difficult and time-consuming work  
of bridging the R2O gap are often better able to succeed professionally by directing their  
efforts in more traditional ways, such as fundamental research through NSF grants. This R2O 
“valley of death” is not specific to AI/ML alone but is simply one example of more widespread 
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organizational issues within NOAA (NWP is another example). Regardless, from an AI/ML stand-
point, it is important to note that this is a consequence of the misalignment between program 
structures (the number of programs for which funding is available, the amount of funding, and 
the time periods over which the awarded work is to be conducted) and academic requirements 
for research. This means that the valley can be crossed if efforts are undertaken to do so which 
would be broadly beneficial to the U.S. Weather Enterprise.

Recommendations
There are potential solutions to each of the above obstacles. Naturally, each of these solu-
tions is subject to particulars regarding future funding and staffing, for which we have no 
foreknowledge and do not make any predictions.

Workforce training and domain expertise. It would seem reasonable to identify the NCAI 
as an AI/ML training resource. This group has already begun efforts to develop example 
Jupyter notebooks and R materials organized in a “learning journey” style to ultimately 
encourage the broad AI community of practice to contribute materials to an NCAI curated 
library. Additional materials specific to NWS interests could be developed with collaboration 
from National Centers and other NWS entities [e.g., postprocessing with the Meteorological 
Development Laboratory (MDL)], and NCAI staff have indicated an interest in undertaking 
that effort. In that regard, NCAI has requested approval for a public repository landing page 
(NOAA GitHub), where they would stage NCAI created and contributed examples (e.g., rip 
current detection and others are in development) and expand from there with contributions 
across NOAA. It is likely that a focus on hiring in the NWS with scientific background in 
both meteorology and AI/ML will be needed in addition to enhancing the training of exist-
ing staff. Beyond providing training materials, workforce training and development can be 
accelerated by improved coordination of AI/ML activities between product developers and 
forecasters. This topic is explored below.

Data and computational resources. The current uncoordinated nature of workforce training 
could be ameliorated with a software, data, and consulting clearing house or library (e.g., 
Fig. 2 of Hamill 2015). This library would include a variety of standardized datasets that 
could be used to develop different types of AI/ML applications, depending on the need, and 
most importantly, as a reference against which to compare AI/ML applications. Notably, this 
echoes the recommendations of Haupt et al. (2021), who initiated the development of an 
open-access experimental testbed database containing five datasets, as well as code to aid 
in rapid analysis and evaluation of results. Dueben et al. (2022) extend that work by provid-
ing a definition of benchmark datasets for weather and climate applications and a list of the 
benchmark datasets that will be needed.

This library could include modular software to facilitate AI/ML application development 
and would extend, at the minimum, to include the variety of standard techniques currently in 
wide use, such as random forests (RF), multilayer perceptrons (MLP-ANN, a form of artificial 
neural network), and convolutional neural networks (CNN). Since platforms such as Google 
TensorFlow are already in wide use, it would be sensible to 
leverage those capabilities in developing this library.

A critical inclusion in such a data library should be re-
forecast datasets. These datasets, although computation-
ally costly1 to produce, are extraordinarily valuable for 
validating weather events, addressing calibration issues, 
and general predictability studies. Larger ensembles are 
valuable for providing proper baselines for probabilistic 

1 EMC estimates that a 30-yr global ensemble  
at 0.25° grid spacing, with 11 members run  
two times per week out to 48 days and 5 members  
daily out to 16 days, would require 1,500 million  
core-hours at a computational cost of approxi-
mately $56 million. The primary cost in produc-
ing the reforecast is the reanalysis (B. Gross, 
V. Tallapragada, and J. Whitaker 2022, personal 
communication).
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forecasting. The reforecast has the additional benefit of providing a stable dataset which 
will provide more robust weights in usual AI/ML tools such as ANNs, since the underly-
ing data-generating mechanism (the computer model) is not changing. An example of the 
effective use of such datasets is the use of quantile mapping for precipitation forecasts 
within the National Blend of Models (NBM; Hamill et al. 2017; T. M. Hamill 2022, personal 
communication). However, owing to the cost of producing such ensembles, the number of 
members and the archived output has been restricted, making these datasets less useful. 
This expense should be supported, and available variables should be increased for the 
purpose of postprocessing in general and especially AI/ML work.

We note that “smart sub-sampling” (Kravtsov et al. 2022) is an approach that, within 
limits that depend on the application, can make reforecasts less costly. Those authors 
built a high-dimensional empirical model of temperature and precipitation that could 
produce a minimal subset of dates that provide representative sampling of local precipita-
tion distributions across the contiguous United States, both in training and independent 
test data. To generate this model, however, a long time series of (reanalysis) data are  
needed.

Concomitant with reanalysis efforts should be the collation of relevant observations/
analyses. An example of the latter is the need for long time series of quality high-resolution 
analyses in Alaska and Hawaii to improve the NBM. Further, convenient formatting of  
such datasets drastically improves efficiency of AI/ML/postprocessing efforts (e.g., chunked 
netCDF datasets for easy access and reduced data-wrangling time). The production of such 
benchmark datasets, organized according to agreed-upon standards and frameworks, would 
be a major step forward in facilitating AI/ML development efforts.

A key element of this concept is the need for AI/ML consultants who can facilitate the 
development and use of these tools by domain experts across the NWS. The challenge 
of finding the right balance between domain experts, craft consultants, and interdisci-
plinary agents is significant, but this team-based approach would allow these consul-
tants to partner with NWS experts on specific projects of interest to those organizations 
without dispersing that expertise into the many existing silos. Additionally, this would 
allow for developing institutional knowledge concerning ongoing projects and reduce 
duplication of effort. This partnering will likely lead to the added, crucial development 
of in-house AI/ML expertise within those specific areas through the project basis of that  
activity.

Another example of how team-based approaches add value is the issue of feature/
predictor selection. Time and attention employing meteorological intuition is necessary 
to determine potentially useful features, and to limit the constraints imposed by the 
“curse of dimensionality”—the size of needed training data increases exponentially as 
the dimensions of the AI/ML problem expand, so efforts to select and reduce relevant 
features are important.

Where this library is located within the NWS is immaterial to the overall concept and 
should be driven by logistical considerations—one likely location for it might be the MDL, 
given the extensive experience with postprocessing within that group. Notably, with the  
advent of the COVID pandemic and the success of virtual work across the NWS, it should  
be possible to establish a kind of hybrid organization for this library, which in the competi-
tive environment for AI/ML expertise will allow for less difficulty in staffing.

This concept should work well for individual Weather Forecast Offices as well as the  
NWS Centers, provided that sufficient human effort is provided within the library for those 
individuals to work as collaborative development and implementation teams. This latter is 
obviously crucial as demand for such partnering is likely to be substantial, given the present 
and likely future activity in AI/ML within the NWS.
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Fundamental AI/ML research. Currently, academic expertise is brought to bear through a  
variety of mechanisms including the JTTI; the Collaborative Science, Technology, and  
Applied Research (CSTAR) program; and Cooperative Institutes. Adjusting the beginning  
RL required for funding opportunities to sync more realistically with academic research  
would allow for the exploratory AI/ML work that is needed. Either some funding vehicle 
specific to that concept needs to be implemented or existing ones should be appropriately 
adjusted. The exploratory niche is clearly the most obvious place for academic work and 
fits well with NWS needs in the larger sense. For example, calibration works in opposition to 
the rare event nature of many of the forecasts of most interest—how to balance these consid-
erations within a specific operational context necessitates coordinated, exploratory efforts 
along with input from operational experts.

Additionally, there is a need for a seamless, end-to-end pathway through which projects 
could pass from exploration/development to testbed to proving ground to operational imple-
mentation, along with the necessary personnel for ongoing support of those efforts. This 
formalized process must entrain NWS personnel from the beginning to retain crucial opera-
tional domain expertise. Theme-based calls for such efforts (e.g., heavy rainfall, wildfires, 
etc.), connected to a process as detailed above, would likely lead to more rapid progress than 
is currently possible. While there has been some effort to accomplish this in recent years 
through the JTTI and CSTAR programs, this has proven insufficient for the following reasons. 
First, these programs do not support the fundamental AI/ML research that is needed at the 
earliest stages, as discussed above in the context of RLs. Second, while these programs can 
lead to operational implementation, the path is not strictly end-to-end as described above. 
Third, the entrainment of NWS personnel, in practice, is limited owing to operational and 
other time constraints—in order for these relationships to be more effective, time must be 
set aside for that activity. Last, the number of awards that result from these programs is not 
sufficient to cover the breadth of the effort that is needed.

Future advances. Boukabara et al. (2021) argue that in NOAA, AI/ML will largely supple-
ment, rather than replace, current tools and approaches. This follows the history of the use 
of guidance tools in operational forecasting. A new approach, the production of data-driven 
forecast models instead of computationally expensive numerical models (e.g., Weyn et al. 
2020, 2021; Pathak et  al. 2022; Lam et  al. 2022), may be one exception. Employing a 
deep-learning model trained with reanalysis data, Weyn et al. (2021) were able to gener-
ate 85,800 reforecasts in a few hours on a single GPU. This model provides only a few out-
put variables at 1.4° latitude–longitude grid spacing, lacks conservation laws or any direct 
incorporation of physics, and its skill is approximately a decade behind current forecast 
models at short-to-medium range. However, the model can learn physics-based phenomena 
directly from the data, and physical constraints such as conservation laws can be built into 
the learning process. Further, Weyn et al. (2020, 2021) show that it is straightforward to add 
additional variables to such models, and additional efforts of this kind have already shown 
skill competitive with NWP models (Pathak et al. 2022; Lam et al. 2022). Likely some combi-
nation of data-driven modeling will exist alongside of traditional NWP in the future.

The ability to rapidly generate large multimodel forecast ensembles that include initial 
condition uncertainty using the above approach can provide an additional operational benefit. 
It is sometimes the case that prior to a major weather event, details concerning the control-
ling factors are poorly known. One such example was the 3 May 1999 tornado outbreak in 
Oklahoma and Kansas (Roebber et al. 2002). As noted by those authors, prior to this event 
“no observational, conceptual, or NWP model evidence existed to support an outbreak sce-
nario.” Their analysis, using “potential vorticity surgery,” indicated that the likelihood of 
an outbreak scenario was highly sensitive to details concerning an upper-level flow feature. 
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Another example is Ribeiro et al. (2022), who used a 40-member ensemble to demonstrate the 
low short-range predictability of a derecho event related to convection initiation, the organi-
zation of a dominant bow echo mesoscale convective system (MCS), and MCS maintenance. 
Such a capability does not exist in operations today, but could be feasible in the future using 
data-driven models.

Further, by using a cluster analysis tool, forecasters would be able to quickly identify 
the most likely outcome and the most likely worst-case outcome from the large ensemble 
of forecasts. A second application of cluster analysis to the initial conditions of these 
respective forecast scenarios might reveal particular elements that should be monitored 
most closely as the forecast evolves. This ability would improve situational awareness 
and operational forecast confidence. Such cluster approaches have already been applied 
to east coast winter storms (Zheng et al. 2019).

This essay has identified obstacles to achieving those advances but also offers solutions 
that will permit the great potential that AI/ML offers to operational weather forecasting by 
the NWS to be fully realized. We close with a statement from Boukabara et al. (2021), with 
which we wholly agree, and which we believe underlines the urgency to remove the obstacles 
to AI/ML work within the NWS:

Despite the challenges in leveraging AI for Earth science, we expect greatly expanding use of AI 
for environmental data and forecasting applications. The drive to simultaneously improve fore-
cast skill (by accounting for unknown or difficult to model phenomena) and increase efficiency 
(therefore reducing cost and meeting latency requirements) will continue to make AI attractive 
to operational centers like NOAA.
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